

Light Paves the Way to Single-Molecule Detection and Photocontrol, Foundations of Super-Resolution Microscopy

W. E. Moerner

Departments of Chemistry, and by courtesy, of Applied Physics Stanford University, Stanford, CA USA 94305

ABSTRACT

More than 25 years ago, low temperature experiments aimed at establishing the ultimate limits to optical storage in solids led to the first optical detection and spectroscopy of a single molecule in the condensed phase. At this unexplored ultimate limit, many surprises occurred where single molecules showed both spontaneous changes (blinking) and light-driven control of emission, properties that were also observed in 1997 at room temperature with single green fluorescent protein variants. These observations form foundations for super-resolution microscopy beyond the diffraction limit based on control of the emission of single molecules. New structures and behaviors are now being observed in a variety of biological systems which were hidden before. Beyond super-resolution, tracking and trapping of single molecules continues to yield surprises about dynamics and behavior on the nanoscale.

